Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38328099

RESUMEN

Burkholderia cenocepacia is an opportunistic and infective bacterium containing an orphan DNA methyltransferase (M.BceJIV) with roles in regulating gene expression and motility of the bacterium. M.BceJIV recognizes a GTWWAC motif (where W can be an adenine or a thymine) and methylates the N6 of the adenine at the fifth base position (GTWWAC). Here, we present a high-resolution crystal structure of M.BceJIV/DNA/sinefungin ternary complex and allied biochemical, computational, and thermodynamic analyses. Remarkably, the structure shows not one, but two DNA substrates bound to the M.BceJIV dimer, wherein each monomer contributes to the recognition of two recognition sequences. This unexpected mode of DNA binding and methylation has not been observed previously and sets a new precedent for a DNA methyltransferase. We also show that methylation at two recognition sequences occurs independently, and that GTWWAC motifs are enriched in intergenic regions of a strain of B. cenocepacia's genome. We further computationally assess the interactions underlying the affinities of different ligands (SAM, SAH, and sinefungin) for M.BceJIV, as a step towards developing selective inhibitors for limiting B. cenocepacia infection.

2.
Soft Matter ; 20(4): 909-922, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38189157

RESUMEN

The formation and budding of lipid droplets (LDs) are known to be governed by the LD size and by membrane tensions in the endoplasmic reticulum (ER) bilayer and LD-monolayers. Using coarse-grained simulations of an LD model, we first show that ER-embedded LDs of different sizes can form through a continuous transition from wide LD lenses to spherical LDs at a fixed LD size. The ER tendency to relax its bilayer modulates the transition via a subtle interplay between the ER and LD lipid densities. By calculating the energetic landscape of the LD transition, we demonstrate that this size-independent transition is regulated by the mechanical force balance of ER and LD-tensions, independent from membrane bending and line tension whose energetic contributions are negligible according to our calculations. Our findings explain experimental observation of stable LDs of various shapes. We then propose a novel mechanism for directional LD budding where the required membrane asymmetry is provided by the exchange of lipids between the LD-monolayers. Remarkably, we demonstrate that this budding process is energetically neutral. Consequently, LD budding can proceed by a modest energy input from proteins or other driving agents. We obtain equal lipid densities and membrane tensions in LD-monolayers throughout budding. Our findings indicate that unlike LD formation, LD budding by inter-monolayer lipid exchange is a tension-independent process.


Asunto(s)
Gotas Lipídicas , Lípidos , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos
3.
Biomolecules ; 13(6)2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37371505

RESUMEN

Biological and biomimetic membranes are based on lipid bilayers, which consist of two monolayers or leaflets. To avoid bilayer edges, which form when the hydrophobic core of such a bilayer is exposed to the surrounding aqueous solution, a single bilayer closes up into a unilamellar vesicle, thereby separating an interior from an exterior aqueous compartment. Synthetic nanovesicles with a size below 100 nanometers, traditionally called small unilamellar vesicles, have emerged as potent platforms for the delivery of drugs and vaccines. Cellular nanovesicles of a similar size are released from almost every type of living cell. The nanovesicle morphology has been studied by electron microscopy methods but these methods are limited to a single snapshot of each vesicle. Here, we review recent results of molecular dynamics simulations, by which one can monitor and elucidate the spatio-temporal remodeling of individual bilayers and nanovesicles. We emphasize the new concept of leaflet tensions, which control the bilayers' stability and instability, the transition rates of lipid flip-flops between the two leaflets, the shape transformations of nanovesicles, the engulfment and endocytosis of condensate droplets and rigid nanoparticles, as well as nanovesicle adhesion and fusion. To actually compute the leaflet tensions, one has to determine the bilayer's midsurface, which represents the average position of the interface between the two leaflets. Two particularly useful methods to determine this midsurface are based on the density profile of the hydrophobic lipid chains and on the molecular volumes.


Asunto(s)
Membrana Dobles de Lípidos , Simulación de Dinámica Molecular , Membrana Dobles de Lípidos/química , Membrana Celular/metabolismo , Endocitosis
4.
Soft Matter ; 19(20): 3723-3732, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37190858

RESUMEN

Biomolecular condensates (BCs) are fluid droplets that form in biological cells by liquid-liquid phase separation. Their major components are intrinsically disordered proteins. Vast attention has been given in recent years to BCs inside the cytosol and nucleus. BCs at the cell membrane have not been studied to the same extent so far. However, recent studies provide increasingly more examples of interfaces between BCs and membranes which function as platforms for diverse biomolecular processes. Galectin-3, for example, is known to mediate clathrin-independent endocytosis and has been recently shown to undergo liquid-liquid phase separation, but the function of BCs of galectin-3 in endocytic pit formation is unknown. Here, we use dissipative particle dynamics simulations to study a generic coarse-grained model for BCs interacting with lipid membranes. In analogy to galectin-3, we consider polymers comprising two segments - one of them mediates multivalent attractive interactions between the polymers, and the other one has affinity for association with specific lipid head groups. When these polymers are brought into contact with a multi-component membrane, they spontaneously assemble into droplets and, simultaneously, induce lateral separation of lipids within the membrane. Interestingly, we find that if the membrane is bent, the polymer droplets localize at membrane regions curved inward. Although the polymers have no particular shape or intrinsic curvature, they appear to sense membrane curvature when clustered at the membrane. Our results indicate toward a generic mechanism of membrane curvature sensing by BCs involved in such processes as endocytosis.


Asunto(s)
Condensados Biomoleculares , Galectina 3 , Galectina 3/metabolismo , Membrana Celular/metabolismo , Lípidos
5.
Nat Commun ; 14(1): 615, 2023 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739277

RESUMEN

During endocytosis of nanoparticles by cells, the cellular membranes engulf the particles, thereby forming a closed membrane neck that subsequently undergoes fission. For solid nanoparticles, these endocytic processes have been studied in some detail. Recently, such processes have also been found for liquid and condensate droplets, both in vitro and in vivo. These processes start with the spreading of the droplet onto the membrane followed by partial or complete engulfment of the droplet. Here, we use molecular dynamics simulations to study these processes at the nanoscale, for nano-sized droplets and vesicles. For both partial and complete engulfment, we observe two different endocytic pathways. Complete engulfment leads to a closed membrane neck which may be formed in a circular or strongly non-circular manner. A closed circular neck undergoes fission, thereby generating two nested daughter vesicles whereas a non-circular neck hinders the fission process. Likewise, partial engulfment of larger droplets leads to open membrane necks which can again have a circular or non-circular shape. Two key parameters identified here for these endocytic pathways are the transbilayer stress asymmetry of the vesicle membrane and the positive or negative line tension of the membrane-droplet contact line.


Asunto(s)
Nanopartículas , Membrana Celular/metabolismo , Endocitosis
6.
ACS Nano ; 15(4): 7237-7248, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33819031

RESUMEN

Membrane budding and fission are essential cellular processes that produce new membrane compartments during cell and organelle division, for intracellular vesicle trafficking as well as during endo- and exocytosis. Such morphological transformations have also been observed for giant lipid vesicles with a size of many micrometers. Here, we report budding and fission processes of lipid nanovesicles with a size below 50 nm. We use coarse-grained molecular dynamics simulations, by which we can visualize the morphological transformations of individual vesicles. The budding and fission processes are induced by low concentrations of small solutes that absorb onto the outer leaflets of the vesicle membranes. In addition to the solute concentration, we identify the solvent conditions as a second key parameter for these processes. For good solvent conditions, the budding of a nanovesicle can be controlled by reducing the vesicle volume for constant solute concentration or by increasing the solute concentration for constant vesicle volume. After the budding process is completed, the budded vesicle consists of two membrane subcompartments which are connected by a closed membrane neck. The budding process is reversible as we demonstrate explicitly by reopening the closed neck. For poor solvent conditions, on the other hand, we observe two unexpected morphological transformations of nanovesicles. Close to the binodal line, at which the aqueous solution undergoes phase separation, the vesicle exhibits recurrent shape changes with closed and open membrane necks, reminiscent of flickering fusion pores (kiss-and-run) as observed for synaptic vesicles. As we approach the binodal line even closer, the recurrent shape changes are truncated by the fission of the membrane neck which leads to the division of the nanovesicle into two daughter vesicles. In this way, our simulations reveal a nanoscale mechanism for the budding and fission of nanovesicles, a mechanism that arises from the interplay between membrane elasticity and solute-mediated membrane adhesion.


Asunto(s)
Lípidos , Agua , Adsorción , División Celular , Membrana Celular , Femenino , Humanos , Embarazo
7.
Nano Lett ; 19(11): 7703-7711, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31556622

RESUMEN

Nanovesicles are closed, bubblelike surfaces with a diameter between 20 and 200 nm, formed by lipid bilayers and biomembranes. Electron microscopy (EM) studies have shown that these vesicles can attain both spherical and nonspherical shapes. One disadvantage of EM methods is that they provide only a single snapshot of each vesicle. Here, we use molecular dynamics simulations to monitor the morphological transformations of individual nanovesicles. We start with the assembly of spherical vesicles that enclose a certain volume of water and contain a certain total number of lipids. When we reduce their volume, the spherical vesicles are observed to transform into a multitude of nonspherical shapes such as oblates and stomatocytes as well as prolates and dumbbells. This surprising polymorphism can be controlled by redistributing a small fraction of lipids between the inner and outer leaflets of the bilayer membranes. As a consequence, the inner and the outer leaflets experience different mechanical tensions. Small changes in the vesicle volume reduce the overall bilayer tension by 2 orders of magnitude, thereby producing tensionless bilayers. In addition, we show how to determine, for a certain total number of lipids, the unique spherical vesicle for which both leaflet tensions vanish individually. We also compute the local spontaneous curvature of the spherical membranes by identifying the first moment of the spherically symmetric stress profiles across the lipid bilayers with the nanoscopic torque as derived from curvature elasticity. Our study can be extended to other types of lipid membranes and sheds new light on cellular nanovesicles such as exosomes, which are increasingly used as biomarkers and drug delivery systems.

8.
J Phys Chem B ; 120(49): 12568-12583, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27973822

RESUMEN

Many aqueous binary mixtures, such as water-ethanol, are known to exhibit multiple structural transformations that are apparently driven by intermolecular hydrophobic interaction as well as hydrogen bonding. These interactions often cooperate to form special types of self-assembled structures. We study the effect of temperature on the formation of transient ethanol clusters as well as on the transient dynamic heterogeneity induced in the system due to such clustering. A major finding of the work is the existence of a strong temperature dependence of the extent of structural heterogeneity. Distinct signatures of dynamic heterogeneity of ethanol molecules are also found to appear with lowering of temperature. This is attributed to the formation of transient ethanol clusters that are known to have a small lifetime (of the order of a few picoseconds only). The transient dynamical features of dynamic heterogeneity are expected to affect those relaxation processes occurring at subpicosecond time scales. The present analyses reveal a number of interesting features, which were not explored earlier in this widely studied binary mixture.

9.
Faraday Discuss ; 177: 313-28, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25692942

RESUMEN

Local heterogeneity is ubiquitous in natural aqueous systems. It can be caused locally by external biomolecular subsystems like proteins, DNA, micelles and reverse micelles, nanoscopic materials etc., but can also be intrinsic to the thermodynamic nature of the aqueous solution itself (like binary mixtures or at the gas-liquid interface). The altered dynamics of water in the presence of such diverse surfaces has attracted considerable attention in recent years. As these interfaces are quite narrow, only a few molecular layers thick, they are hard to study by conventional methods. The recent development of two dimensional infra-red (2D-IR) spectroscopy allows us to estimate length and time scales of such dynamics fairly accurately. In this work, we present a series of interesting studies employing two dimensional infra-red spectroscopy (2D-IR) to investigate (i) the heterogeneous dynamics of water inside reverse micelles of varying sizes, (ii) supercritical water near the Widom line that is known to exhibit pronounced density fluctuations and also study (iii) the collective and local polarization fluctuation of water molecules in the presence of several different proteins. The spatio-temporal correlation of confined water molecules inside reverse micelles of varying sizes is well captured through the spectral diffusion of corresponding 2D-IR spectra. In the case of supercritical water also, we observe a strong signature of dynamic heterogeneity from the elongated nature of the 2D-IR spectra. In this case the relaxation is ultrafast. We find remarkable agreement between the different tools employed to study the relaxation of density heterogeneity. For aqueous protein solutions, we find that the calculated dielectric constant of the respective systems unanimously shows a noticeable increment compared to that of neat water. However, the 'effective' dielectric constant for successive layers shows significant variation, with the layer adjacent to the protein having a much lower value. Relaxation is also slowest at the surface. We find that the dielectric constant achieves the bulk value at distances more than 3 nm from the surface of the protein.


Asunto(s)
Proteínas Bacterianas/química , Muramidasa/química , Agua/química , Difusión , Humanos , Enlace de Hidrógeno , Micelas , Conformación Molecular , Espectrofotometría Infrarroja/métodos , Streptococcus/química , Propiedades de Superficie , Termodinámica , Factores de Tiempo
10.
J Chem Phys ; 141(22): 22D531, 2014 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-25494802

RESUMEN

Since the time of Kirkwood, observed deviations in magnitude of the dielectric constant of aqueous protein solution from that of neat water (∼80) and slower decay of polarization have been subjects of enormous interest, controversy, and debate. Most of the common proteins have large permanent dipole moments (often more than 100 D) that can influence structure and dynamics of even distant water molecules, thereby affecting collective polarization fluctuation of the solution, which in turn can significantly alter solution's dielectric constant. Therefore, distance dependence of polarization fluctuation can provide important insight into the nature of biological water. We explore these aspects by studying aqueous solutions of four different proteins of different characteristics and varying sizes, chicken villin headpiece subdomain (HP-36), immunoglobulin binding domain protein G (GB1), hen-egg white lysozyme (LYS), and Myoglobin (MYO). We simulate fairly large systems consisting of single protein molecule and 20000-30000 water molecules (varied according to the protein size), providing a concentration in the range of ∼2-3 mM. We find that the calculated dielectric constant of the system shows a noticeable increment in all the cases compared to that of neat water. Total dipole moment auto time correlation function of water ⟨δMW(0)δMW(t)⟩ is found to be sensitive to the nature of the protein. Surprisingly, dipole moment of the protein and total dipole moment of the water molecules are found to be only weakly coupled. Shellwise decomposition of water molecules around protein reveals higher density of first layer compared to the succeeding ones. We also calculate heuristic effective dielectric constant of successive layers and find that the layer adjacent to protein has much lower value (∼50). However, progressive layers exhibit successive increment of dielectric constant, finally reaching a value close to that of bulk 4-5 layers away. We also calculate shellwise orientational correlation function and tetrahedral order parameter to understand the local dynamics and structural re-arrangement of water. Theoretical analysis providing simple method for calculation of shellwise local dielectric constant and implication of these findings are elaborately discussed in the present work.


Asunto(s)
Proteínas/química , Agua/química , Animales , Pollos , Modelos Moleculares , Muramidasa/química , Mioglobina/química , Proteínas de Neurofilamentos/química , Fragmentos de Péptidos/química , Electricidad Estática
11.
J Chem Phys ; 141(13): 135101, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25296839

RESUMEN

The protein folding funnel paradigm suggests that folding and unfolding proceed as directed diffusion in a multidimensional free energy surface where a multitude of pathways can be traversed during the protein's sojourn from initial to final state. However, finding even a single pathway, with the detail chronicling of intermediates, is an arduous task. In this work we explore the free energy surface of unfolding pathway through umbrella sampling, for a small globular α-helical protein chicken-villin headpiece (HP-36) when the melting of secondary structures is induced by adding DMSO in aqueous solution. We find that the unfolding proceeds through the initial separation or melting of aggregated hydrophobic core that comprises of three phenylalanine residues (Phe7, Phe11, and Phe18). This separation is accompanied by simultaneous melting of the second helix. Unfolding is found to be a multistage process involving crossing of three consecutive minima and two barriers at the initial stage. At a molecular level, Phe18 is observed to reorient itself towards other hydrophobic grooves to stabilize the intermediate states. We identify the configuration of the intermediates and correlate the intermediates with those obtained in our previous works. We also give an estimate of the barriers for different transition states and observe the softening of the barriers with increasing DMSO concentration. We show that higher concentration of DMSO tunes the unfolding pathway by destabilizing the third minimum and stabilizing the second one, indicating the development of a solvent modified, less rugged pathway. The prime outcome of this work is the demonstration that mixed solvents can profoundly transform the nature of the energy landscape and induce unfolding via a modified route. A successful application of Kramer's rate equation correlating the free energy simulation results shows faster rate of unfolding with increasing DMSO concentration. This work perhaps presents the first systematic theoretical study of the effect of a chemical denaturant on the microscopic free energy surface and rates of unfolding of HP-36.


Asunto(s)
Proteínas de Neurofilamentos/química , Fragmentos de Péptidos/química , Desplegamiento Proteico , Animales , Pollos , Dimetilsulfóxido/química , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Estructura Secundaria de Proteína , Termodinámica
12.
J Phys Chem B ; 117(49): 15625-38, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24168520

RESUMEN

We carry out a series of long atomistic molecular dynamics simulations to study the unfolding of a small protein, chicken villin headpiece (HP-36), in water-ethanol (EtOH) binary mixture. The prime objective of this work is to explore the sensitivity of protein unfolding dynamics toward increasing concentration of the cosolvent and unravel essential features of intermediates formed in search of a dynamical pathway toward unfolding. In water-ethanol binary mixtures, HP-36 is found to unfold partially, under ambient conditions, that otherwise requires temperature as high as ∼600 K to denature in pure aqueous solvent. However, an interesting course of pathway is observed to be followed in the process, guided by the formation of unique intermediates. The first step of unfolding is essentially the separation of the cluster formed by three hydrophobic (phenylalanine) residues, namely, Phe-7, Phe-11, and Phe-18, which constitute the hydrophobic core, thereby initiating melting of helix-2 of the protein. The initial steps are similar to temperature-induced unfolding as well as chemical unfolding using DMSO as cosolvent. Subsequent unfolding steps follow a unique path. As water-ethanol shows composition-dependent anomalies, so do the details of unfolding dynamics. With an increase in cosolvent concentration, different partially unfolded intermediates are found to be formed. This is reflected in a remarkable nonmonotonic composition dependence of several order parameters, including fraction of native contacts and protein-solvent interaction energy. The emergence of such partially unfolded states can be attributed to the preferential solvation of the hydrophobic residues by the ethyl groups of ethanol. We further quantify the local dynamics of unfolding by using a Marcus-type theory.


Asunto(s)
Etanol/química , Proteínas de Microfilamentos/química , Solventes/química , Agua/química , Animales , Pollos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de Microfilamentos/metabolismo , Simulación de Dinámica Molecular , Estructura Terciaria de Proteína , Desplegamiento Proteico
13.
J Phys Chem B ; 116(12): 3713-22, 2012 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-22364364

RESUMEN

Water-ethanol mixtures exhibit many interesting anomalies, such as negative excess partial molar volume of ethanol, excess sound absorption coefficient at low concentrations, and positive deviation from Raoult's law for vapor pressure, to mention a few. These anomalies have been attributed to different, often contradictory origins, but a quantitative understanding is still lacking. We show by computer simulation and theoretical analyses that these anomalies arise from the sudden emergence of a bicontinuous phase that occurs at a relatively low ethanol concentration of x(eth) ≈ 0.06-0.10 (that amounts to a volume fraction of 0.17-0.26, which is a significant range!). The bicontinuous phase is formed by aggregation of ethanol molecules, resulting in a weak phase transition whose nature is elucidated. We find that the microheterogeneous structure of the mixture gives rise to a pronounced nonmonotonic composition dependence of local compressibility and nonmonotonic dependence in the peak value of the radial distribution function of ethyl groups. A multidimensional free energy surface of pair association is shown to provide a molecular explanation of the known negative excess partial volume of ethanol in terms of parallel orientation and hence better packing of the ethyl groups in the mixture due to hydrophobic interactions. The energy distribution of the ethanol molecules indicates additional energy decay channels that explain the excess sound attenuation coefficient in aqueous alcohol mixtures. We studied the dependence of the solvation of a linear polymer chain on the composition of the water-ethanol solvent. We find that there is a sudden collapse of the polymer at x(eth) ≈ 0.05-a phenomenon which we attribute to the formation of the microheterogeneous structures in the binary mixture at low ethanol concentrations. Together with recent single molecule pulling experiments, these results provide new insight into the behavior of polymer chain and foreign solutes, such as enzymes, in aqueous binary mixtures.

14.
J Phys Chem B ; 115(23): 7612-20, 2011 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-21591704

RESUMEN

We find that at a mole fraction 0.05 of DMSO (x(DMSO) = 0.05) in aqueous solution, a linear hydrocarbon chain of intermediate length (n=30-40) adopts the most stable collapsed conformation. In pure water, the same chain exhibits an intermittent oscillation between the collapsed and the extended coiled conformations. Even when the mole fraction of DMSO in the bulk is 0.05, the concentration of the same in the first hydration layer around the hydrocarbon of chain length 30 (n=30) is as large as 17%. Formation of such hydrophobic environment around the hydrocarbon chain may be viewed as the reason for the collapsed conformation gaining additional stability. We find a second anomalous behavior to emerge near x(DMSO)=0.15, due to a chain-like aggregation of the methyl groups of DMSO in water that lowers the relative concentration of the DMSO molecules in the hydration layer. We further find that as the concentration of DMSO is gradually increased, it progressively attains the extended coiled structure as the stable conformation. Although Flory-Huggins theory (for binary mixture solvent) fails to predict the anomaly at x(DMSO)=0.05, it seems to capture the essence of the anomaly at 0.15.


Asunto(s)
Dimetilsulfóxido/química , Hidrocarburos/química , Simulación de Dinámica Molecular , Solventes/química , Agua/química , Conformación Molecular
15.
J Phys Chem A ; 114(1): 93-6, 2010 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-20020706

RESUMEN

In the present study, we investigated the magnetic interactions of some dinitrenes by employing the broken symmetry-unrestricted density functional theoretical (BS-UDFT) approach along with the use of three basis sets. The magnetic coupling parameter (J) has been calculated, and thereby the magnetic character of the molecule and the strength of magnetic interaction are explored for these molecules. The exchange coupling parameters for the corresponding unconjugated systems are also calculated to see the role of pi-conjugation. Our results suggest that a strong antiferromagnetic interaction exists in conjugated dinitrenes, and the strength of magnetic interaction decreases with increase in spacer length. For the unconjugated dinitrenes, the nature of magnetic interaction reduced appreciably and becomes weakly antiferromagnetic. The singlet-triplet energy gap for each system is also calculated. For the conjugated systems, it is observed that the singlet states are more stable than the triplet states, whereas for the unconjugated systems, the relative stability of the singlet state reduces to a considerable extent. This discrepancy of results for the conjugated and unconjugated dinitrenes can be attributed to the effect of pi-conjugation, and the results can be well explained by this effect.


Asunto(s)
Simulación por Computador , Magnetismo , Modelos Químicos , Quinonas/química , Radicales Libres/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...